What's The Kraze with Total Keratometry? 2022 Southern Eye Congress, July 21-24, 2022 SOUTHERN EYE CONGRESS CLINICAL ASSOCIATE PROFESSOR DIRECTOR OF MEDICAL STUDENT RESEARCH The UNIVERSITY of OKLAHOM HEALTH SCIENCES CENTER Dean McGee KAMRAN-RIAZ@DMEI.ORG

Financial Disclosures

I have no financial interests in this lecture or any information discussed therein

Unrelated Disclosures: Bausch & Lomb – Speaker CorneaGen – Speaker ImmunoGen, Ambrx - Consultant

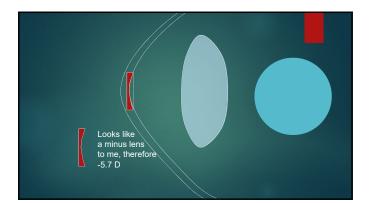
Acknowledgments

Med Students

- Deanna Dang, MS4 OU College of Medicine
 Michael Heath, MS4 OU College of Medicine

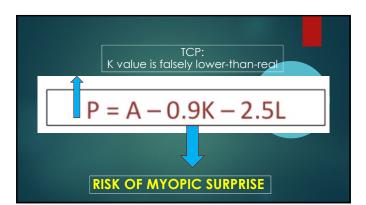
Objectives

- ▶ To introduce and summarize developments in corneal power measurements – total keratometry (TK)
- ► To discuss applications of TK in 5 commonly-encountered patient populations


Introduction: Keratometry and TCP

- Keratometry (K) uses the keratometric index (e.g., 1.3375) to estimate the corneal power from measurements of the anterior
- ▶ The posterior cornea is like the dark side of the moon

What is the refractive power (Ds)


D -	n'-n
s =	r

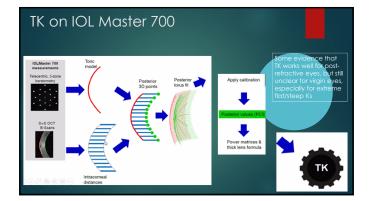
<u>1.37 – 1.33</u> = 5.7 D +5.7D or -5.7D ???? 0.007 m

Introduction: Keratometry and TCP

- Keratometry (K) uses the keratometric index (e.g., 1.3375) to estimate the corneal power from measurements of the anterior corneal surface only
- ▶ The posterior cornea is like the dark side of the moon
- Scheimpflug devices (e.g., Pentacam) can measure posterior corneal surface. Now we can combine the anterior and posterio corneal power into the total corneal power (TCP)
- Sounds good, right? We are measuring more accurately??
- ▶ TCP is typically lower than K values [1-4]

Corneal Power Measurements with Optical Biometry

- Carneal Power Measurements: Assumed measurement of posterior cornea based Gullstrand ratio → more "inaccuracy" in steep/flat K eyes, which offen occur independently and concurrently with short/long AXL eyes
 Posterior corneal astigmatism: usually contributes ATR astigmatism
 - Ranae from -0.26 to -0.78D¹
 - How does ATR contribute to the measured corneal astigmatism?
 Negative: may decrease the WTR of the total corneal astigmatism
 - Poor: if we measure oblique astigmatism
- Additive: may add to the AIR of the total corneal astigmi
 How to measure posterior corneal curvature?
 - Indirect measurements: Nomograms (Baylor, Abulafia-Koch) vs IOL Formulas


CRS 2012: 38: 2080


Koch DD, et al. Co

Total Keratometry (TK)

- The IOL Master 700 (Carl Zeiss Medilec AG, Jena, Germany) is a swept-OCT (SS-OCT) biometer that uses
 - Telecentric keratometry for anterior keratometry measurements
 SS-OCT acquired pachymetry to define a toric posterior surface mad comeal measurements
 - The resulting total keratometry (TK) value offers the surgeon a measurement anterior and posterior corneal radii that can potentially be used for more of calculations
- TK does not differ from standard K in most normal K range unoperated eyes and post-excimer laser surgery eyes.
- But TK and TCA values are NOT interchangeable [1]
- constants

wini, G., Taroni, L., Schlano-Lomoriello, D. heimpflug imaging. Eye **35,** 307–315 (202

Is TK Better? Well...

- Regular Eyes
- Conventional K and TK similar; trend towards better outcomes with TK (60 eyes)
 TK works better with formulas optimized for it, such as Barrett TK ?
- Presbyopia-Correcting IOLs
- TK may help improve outcomes of toric tri-focal IOLs¹
 However, conventional K is better than TK in MFIOLs²

- TK can help better measure corneal power in post-SMILE patients ³ TK doesn't make existing post-LASIK formulas (ASCRS website) better: Barrett True-K with conventional K worked best. (IOA did not improve results!). ⁴ TK makes Haigis better.³
 TK used with customized post-LASIK formulas (ie, BTK with TK) is superior (Barrett is author)⁴
- TK can make some existing formulas (not optimized for post-LASIK) better, such as Evo and Haigis (author was developer of Evo)⁷

Where Can TK Potentially Help?

- ► At this time, no convincing evidence that TK helps improve outcomes in "normal" eyes
- For ~90% of most cataract surgeries, TK values may not help "that" much
- Approximately 0.25D difference on most eyes between K and TK values
- Barrett TK Universal II (built into IOLM): requires no additional surgeon effort
- Not worth inputting TK values manually into online-formula websites for "normal" eyes

iser vision correction)	
Not calculation	OS st
(8)	
Eye status	
LS: Phakic VS: Vitreous body LS: Phakic VS:	
Ref Vk Ref	VA:
EVC: Untreated EVC mode: - EVC: Untreated EVC mode:	
Target ref.: +0.00 D SIA: +0.12 D @ 0* Target ref.: +0.00 D SIA:	+0.12 D @ 0*
Biometric values	
AL: 23.76 mm SO: 9 µm AL: 23.75 mm SO: 6 µm	
ACD: 3.56 mm SO: 6 µm ACD: 3.54 mm SO: 5 µm	
LT: 4,28 mm SO: 9 µm LT: 4,44 mm SO: 8 µm	n
wtw. 11.7 mm wtw. 11.9 mm	
	44.99 D @ 86*
	45.97 D @176*
TSE: 46.40 D SO: 0.05 D TK1: 45.61 D @109" TSE: 45.61 D SO: 0.03 D TK1	45.08 D @ 89*
	45.14 D @179*
K AMO ZOBOO 🗳 AMO ZOBOO K AMO ZOBOO 🖉	AMO ZOBOO
LF =2.05 DF Default LF =2.05 DF Default LF =2.05 DF Default LF	ett TK Universal II - -206 DF Delevit
	DL (D) Ref (D)
	19.50 -0.79
	19.00 -0.45 18.50 -0.11
	8.80 +0.11
	18.00 +0.22
	17.50 #0.55

Where Can TK Potentially Help?

- 1. Identifying Post-Laser Vision Correction (LVC) Eyes

Identifying LVC Eyes

- ➤ We can recognize previous M-LVC during the preoperative examination through accurate history taking, review of prior medical records, and meticulous clinical examination.
- Ancillary diagnostic testing, such as topography, tomography, and anterior segment ocular coherence tomography (AS-OCT), can also help \rightarrow not covered by insurance
- Surgeons can also review optical biometry (OB), as flatter K values combined with long AL are often associated with previous M-LVC ▶ But we may miss patients with M-LVC
- Preoperative examiner is not the surgeon → information not conveyed to the surgeon
- Some surgeons solely utilize biometry measurements and do not have access to topography/tomography

Identifying LVC Eyes

- Can we use TK values to detect M-LVC eyes solely using optical biometry
- ▶ We know that M-LVC alters the relationship of ant-poster corneal radii
- As the APR and P/A values are inversely related, post-M-L APR and higher P/A values, respectively
- Since TK incorporates posterior corneal measurements, we sour index to detect M-LVC eyes using only IOLMaster700 measurem ght to develop an
- The CRW1 Index was tested in several international datasets to assess its accuracy, including a comparison to Rpost/Rant obtained by biometry, three additional corneal imaging devices, and a combined biometry-corneal imaging software program

Identifying LVC Eyes

- ▶ Development of CRW1
- ▶ Six centers 3 in USA, 3 in Austria
 - ▶ Great Lakes Eye Care (St Joseph, MI)
 - ▶ Northwestern University (Chicago, IL)
 - ▶ Penn State University (Hershey, PA)
 - Hanusch Hospital and satellite (Vienna, Austria
 - ► Kepler University Hospital (Linz, Austria)
- ▶ Development dataset (DMEI): 10,780 eyes to identify LVC eyes
- ▶ Several iterations tested before finalizing CRW1
 - CRW1 formula: to be published

Identifying LVC Eyes

► Accuracy of CRW1 compared to Rpost/Rant

Dataset	Method	Cutoff	# Cases	Documented m-LASIK	True (+)	False (+)	Sensitivity	PPV	CRW1 was	
Vienna 1	CRW1	≤ -0.22	3,803	16	14	8	88%	64%	significantly	
Linz	CRW1	≤ -0.22	8,677	34	32	1	94%	97%		
Penn State	CRW1	≤ -0.22	4,038	54	39	2	72%	95%	p < 001) w	itha
Vienna 2	CRW1	≤ -0.22	13,096	58	42	7	72%	86%	notably hig	her
GLEC	CRW1	≤ -0.22	1,014	67	51	4	76%	93%	PPV(93% vs	65%)
NWU	CRW1	≤ -0.22	7,811	307	187	7	61%	96%		
								1	Rpost/Rant	had
Total	CRW1	≤ -0.22	38,439	536	365	29	68%	93%	180 false p	
									and CRW1 only 29 fals	had
Vienna 1	Rpost/Rant	≤ 0.840	3,803	16	12	21	75%	36%	positives.	e
Linz	Rpost/Rant	≤ 0.840	8,677	34	29	33	85%	47%	positives.	
Penn State	Rpost/Rant	≤ 0.840	4,038	54	36	14	67%	72%		
Vienna 2	Rpost/Rant	≤ 0.840	13,096	58	38	50	66%	43%		
GLEC	Rpost/Rant	≤ 0.840	1,014	67	45	23	67%	66%		
NWU	Rpost/Rant	≤ 0.840	7,811	307	178	39	58%	82%		
									4	
Total	Rpost/Rant	≤ 0.840	38,439	536	338	180	63%	65%		

_

_

_

Identifying LVC Eyes

 Accuracy of CRW1 compared to other methods of detecting M-LVC

DMEI C			Cases	m-LASIK	(+)	(+)	Sensitivity	PPV	
	CRW1	≤ -0.22	388	?	12	0	?	100%	
DMEI P	Pentacam*	≤ 76.8*	388	?	14	8	? (64%	/
								_	CRW1 was bet
Penn State C	CRW1	≤ -0.22	2,241	38	26	1	68%	96%	than Pentacar
Penn State 0	Galilei TCP**	≥ 3.88	2,241	38	23	23	61%	50%	Veracity, and
Penn State	Galilei Rpost/Rant***	≤ 0.822	2,241	38	27	128	71%	17%	Galilei Indices
								\geq	
GLEC	CRW1	≤ -0.22	1,014	67	51	2	76%	96%	Similar to Atlas
GLEC	CRWa	≤ -0.11	1,014	67	57	136	85%	30%	Pathfinder II
GLEC V	Veracity	unknown	1,014	67	57	148	85%	28%	software
								\sim	
GLEC	CRW1	≤ -0.22	907	65	49	2	75%	96%	
GLEC A	Atlas	≤ 55%	907	65	57	5	88%	92%	
= Axial/Sag_B/F	F Ratio; ** = "Periph	neral TCP-C	entral TC	P (ray-traced)"; *	*** = "R-	posterior	BFS/R-		

CRW1: Summary

- CRW1 complements interest in TK in presenting a method for surgeons to identify post-M-LVC eyes effectively before cataract surgery solely utilizing IOLM700 measurements
- Researchers may use the CRW1 Index to efficiently identify post-M-LVC eyes for research purposes
- CRW1 can be easily incorporated on the printout page of the studied SS-OCT biometer (or, after recalibration, onto another biometer), similar to other metrics, such as the CW-Chord values
- Why CRW1? Future iterations to identify other pathologies (e.g., Fuchs, KCN, previous H-LVC) through IOLM700 measurements

Refractive Outcomes in M-LVC Eyes

TK in M-LVC Eyes

- Previous authors have shown that TK values can make older-generation formulas, such as Haigis, to perform as similar as post-refractive formulas[1]
- Question: Can TK values used with multivariable formulas help improve refractive accuracy in these challenging post M-LVC eyes?
- Or does simply using a formula dedicated for post M-LVC eyes w work better?

TK in M-LVC Eyes

- Retrospective review of 130 eyes with previous M-LVC that were measured with SS-OCT biometer for K and TK prior to cataract surgery between 2019-2021
 Previous hyperopic LVC and RK were excluded due to an insufficient number of eyes
 Eyes with a history of trauma, comeal ectasia, or vision-limiting ocular pathology were excluded
 Standard K and TK values were inputted into dedicated post-refression multivariant of formulas with mechanisms for adjusted K values using no prior historical data

- Postoperative refractive outcomes were compared to the predicted outcomes to determine predictive error and percentage of eyes within ±1.0D of targeted outcome
- Refractions done 21-90 days postoperatively with lane-length adjustments

						n 23.41 to 3				
Formula	ME	MAE	MedAE	SD	Max AE	% +/- 0.25 D	% +/- 0.5 D	% +/- 0.75 D	% +/- 1.0 D	RMS
EVO-LVC-PK (TK)	-0.09	0.472	0.355	0.616	1.80	36.9%	63.1%	77.7%	86.9%	0.620
EVO LVC (K)	-0.06	0.487	0.390	0.641	1.77	37.7%	61.5%	79.2%	86.2%	0.641
Barrett True K (K)	-0.09	0.512	0.338	0.688	1.97	42.3%	60.0%	74.6%	84.6%	0.691
Barrett True K-PK (TK)	-0.04	0.521	0.353	0.681	2.03	34.9%	63.5%	71.4%	87.3%	0.679
Haigis (TK)	0.16	0.526	0.427	0.652	1.95	31.5%	56.9%	73.8%	83.8%	0.670
Shammas (K)	-0.37	0.619	0.450	0.721	2.34	25.4%	53.1%	70.0%	78.5%	0.807
Haigis L (K)	-0.42	0.621	0.500	0.690	2.76	30.0%	50.8%	66.9%	78.5%	0.807
DGS-Ks	0.51	0.656	0.564	0.631	2.48	20.8%	43.8%	64.6%	80.8%	0.810
DGS-TKs	0.48	0.650	0.568	0.649	2.52	21.5%	41.5%	63.1%	80.8%	0.802
Newer post-LVC fo 3TK on IOLM700 sh EVO and Barrett p Pearl DGS perform	nould b perform	e run ir ed bet	n post-L' ter thar	√C moo n "old-g	de or us	e online			nas, Haigi	s)

Post-LVC Formulas with K vs TK

 if we want to simply look at which formulas 	
consistently achieved within the intended	Barrett True K (TK)
refractive outcome, we again see newer-	EVO-LVC-PK (TK)
generation post-LVC formulas performed	EVO LVC (K)
better than older- generation post-LVC	Barrett True K (K)
formulas	Haigis (TK)
	Shammas (K)

% +/- 0.25 D	% */- 0.5 D	% +/- 0.75 D	% */- 1.0 D
34.9%	63.5%	71.4%	87.3%
36.9%	63.1%	77.7%	86.9%
37.7%	61.5%	79.2%	86.2%
42.3%	60.0%	74.6%	84.6%
31.5%	56.9%	73.8%	83.8%
25.4%	53.1%	70.0%	78.5%
30.0%	50.8%	66.9%	78.5%
	34.9% 36.9% 37.7% 42.3% 31.5% 25.4%	34.9% 63.5% 36.9% 63.1% 37.7% 61.5% 42.3% 60.0% 31.5% 56.9% 25.4% 53.1%	34.9% 63.5% 71.4% 36.9% 63.1% 77.7% 37.7% 61.5% 79.2% 42.3% 60.0% 74.6% 31.5% 56.9% 73.8% 25.4% 53.1% 70.0%

Formula	ΚU	sed	TK Used		Improv		
	ME	MAE	ME	MAE	ME	MAE	
Haigis	0.59	0.71	0.16	0.53	0.43	0.18	
Hoffer Q	0.74	0.83	0.33	0.61	0.41	0.22	
۲-6	0.83	0.90	0.43	0.62	0.40	0.28	
Г2	0.81	0.87	0.44	0.63	0.36	0.24	
OGS	0.51	0.66	0.48	0.65	0.03	0.01	
Barrett	0.97	1.02	0.60	0.73	0.37	0.29	
Holladay 1	1.11	1.16	0.74	0.85	0.37	0.31	
SRK/T	1.22	1.25	0.88	0.94	0.34	0.31	
					0.34	0.23	

Formula	ME	MAE	MedAE	SD	Max AE	% +/- 0.25 D	% +/- 0.5 D	% +/- 0.75 D	% +/- 1.0 D	RMS
Evo-(TK)	0.42	0.586	0.465	0.627	2.33	27.7%	52.3%	73.1%	83.1%	0.754
Kane-(TK)	0.49	0.642	0.520	0.653	2.58	24.6%	48.5%	69.2%	80.8%	0.815
RBF 3.0 (TK)	0.52	0.663	0.563	0.627	2.36	20.9%	42.7%	67.3%	80.0%	0.813

Caution: these popular multivariable formulas performed WORSE when given TK values

?Reason: Not designed to be used for post-LVC eyes

TK in M-LVC Eyes: Recommendations

- despite potential advantages of TK to incorporate posterior corneal measurements, we recommend that surgeons utilize formulas customized for post-LVC eyes.
- Surgeons should utilize dedicated post-refractive formulas with traditional K values.
- Surgeons can utilize either K or TK values for the LVG-LVC and Barrett True K formulas

Refractive Outcomes in Keratoconus Eyes

Background

- Biometry measurements are altituult in KCN eyes1.
 Corneal power is often overestimated, resulting in insufficient IOI power and hyperopic surprise [1]
- > IOL Calculation assumes a certain ratio of the power of the anterior comea compared to the posterior comea, which does not hold true in KCN [2,3] especially with increasing disease severity.
 - Standard Biometry assumes anterior and posterior K's will be equal at visual axis and that the posterior cornea will be

ue 48 Binney OF, Calango Lugen In eyes will bealacous: a review of the current Readure. Curr Opin Opinhaimol. 2018 Jan 29(1):75 45 d of 0.000000000000000000 for current on 4 error autocologi alla landarazio colonia e current Readure. Curr Opin Opinhaimol. 2018 Jan 29(1):75 45 d of 1.4. The current of the current on 4 error autocologi alla landarazio colonia e current Readure.

- ~1.2mm steeper than the anterior cornea.
- Can TK improve predictions in KCN eyes?

TK in KCN Eyes

- > 87 KCN Eyes between DMEI and Bascom Palmer (2-center study)
 > Formulas studied included Barrett Universal 2 (KCN measured, KCN predicted, and original), Kane (original and KCN), EVO, K-6, SRK/T, Pearl DGS, T2, Holday 1, Holladay 1 with EKR65, Haigis, and Hoffer Q
- IOI Con Lens Constants were used
- Values input into the respective formula webs
- > Time from surgery to post-op refraction ranged from 21
- Post-op refractive outcomes were compared with predicted refracted outcomes to determine mean error, mean absolute error, median absolute error, standard deviation, maximum absolute error, root mean squared error, and % of eyes within +/- 0.5D and 1D

KCN eyes (IOLcon) (mean = 24.81 mm; from 21.37 to 29.05 mm) n = 87 Formula ME MAE MedAE SD Max AE % +/- 0.5 D % +/- 0.5 D % +/- 1.0 D RMS												
ormula	ME	MAE	MedAE	SD	Max AE	% +/- 0.25 D	% +/- 0.5 D	% +/- 0.75 D	% +/- 1.0 D	RMS		
arrett KCN - measured (TK	0.17	0.845	0.562	1.161	4.29	18.4%	47.1%	58.6%	72.4%	1.167		
EVO (TK)	0.52	0.873	0.572	1.163	4.67	31.0%	48.3%	60.9%	66.7%	1.269		
arrett KCN -predicted (K)	0.27	0.886	0.598	1.215	4.52	23.0%	46.0%	56.3%	64.4%	1.238		
ane-KCN (K)	0.28	0.894	0.640	1.260	4.93	23.0%	42.5%	56.3%	70.1%	1.284		
ane-KCN (TK)	0.21	0.896	0.642	1.259	4.79	20.7%	42.5%	58.6%	69.0%	1.269		
VO (K)	0.59	0.902	0.432	1.205	4.82	33.3%	54.0%	58.6%	64.4%	1.335		
ane (TK)	0.56	0.912	0.642	1.195	4.79	27.6%	44.8%	57.5%	66.7%	1.312		
-6 (TK)	0.57	0.922	0.585	1.199	5.11	24.1%	42.5%	58.6%	65.5%	1.324		
arrett (TK)	0.63	0.926	0.618	1.181	4.83	25.3%	44.8%	59.8%	65.5%	1.332		
-6 (K)	0.65	0.944	0.516	1.236	5.27	26.4%	48.3%	58.6%	63.2%	1.391		
ane (K)	0.64	0.951	0.440	1.235	4.93	29.9%	52.9%	55.2%	63.2%	1.383		
IGS (TK)	0.64	0.964	0.653	1.201	4.79	23.0%	40.2%	56.3%	63.2%	1.353		
arrett (K)	0.71	0.965	0.490	1.226	4.98	32.2%	51.7%	56.3%	62.1%	1.410		
RK/T (TK)	0.27	0.970	0.620	1.298	4.67	21.8%	37.9%	55.2%	59.8%	1.319		
RK/T (K)	0.35	0.989	0.651	1.337	4.78	28.7%	40.2%	52.9%	58.6%	1.374		
IGS (K)	0.72	1.003	0.636	1.228	4.94	20.7%	39.1%	57.5%	65.5%	1.417		
iolladay 1 (TK)	0.74	1.036	0.607	1.255	5.14	24.1%	40.2%	52.9%	57.5%	1.448		
laigis (TK)	0.75	1.055	0.769	1.292	5.31	19.5%	39.1%	49.4%	64.4%	1.485		
olladay 1 (K)	0.82	1.083	0.607	1.312	5.28	25.3%	43.7%	54.0%	58.6%	1.538		
laigis (K)	0.83	1.105	0.763	1.327	5.48	18.4%	36.8%	49.4%	64.4%	1.559		
offer Q (TK)	0.90	1.145	0.873	1.280	5.37	16.1%	31.0%	47.1%	57.5%	1.556		
loffer Q (K)	0.98	1.199	0.829	1.321	5.54	16.1%	33.3%	44.8%	56.3%	1.636		

	TK in KCN Eyes – including RBF KCN (only RBF eyes) (mean = 24.72 mm; from 21.37 to 22.05 mm) n = 68													
Formula	ME	MAE	MedAE	SD	Max AE	% +/- 0.25 D	% +/- 0.5 D		% +/- 1.0 D	RMS	When			
EVO (K)	0.33	0.724	0.408	0.993	3.35	35.3%	57.4%	63.2%	70.6%	1.041	excluding			
EVO (TK)	0.32	0.730	0.493	0.990	3.37	32.4%	51.5%	66.2%	72.1%	1.033	many extreme			
Barrett KCN -predicted (K)	0.04	0.734	0.485	1.019	3.10	26.5%	51.5%	63.2%	72.1%	1.012				
Barrett KCN - measured (TK		0.734	0.500	1.003	2.98	22.1%	51.5%	64.7%	76.5%	0.996	KCN eyes), a			
K-6 (K)	0.43	0.759	0.388	1.022	3.59	30.9%	54.4%	63.2%	69.1%	1.101	number of			
Kane (TK)	0.36	0.763	0.513	1.021	3.56	30.9%	48.5%	64.7%	70.6%	1.074	non-KCN			
RBF 3.0 (K)	0.40	0.767	0.442	1.037	3.63	30.9%	52.9%	63.2%	70.6%	1.105	formulas did			
Barrett (K)	0.46	0.768	0.469	1.011	3.58	35.3%	55.9%	60.3%	67.6%	1.102				
Kane (K)	0.39	0.769	0.419	1.026	3.54	33.8%	55.9%	58.8%	69.1%	1.090	well, both			
Barrett (TK)	0.43	0.770	0.550	1.004	3.48	27.9%	48.5%	66.2%	70.6%	1.087	with K and			
Kane-KCN (TK)	0.25	0.773	0.551	1.047	3.54	27.9%	47.1%	57.4%	73.5%	1.069	with TK			
SRK/T (K)	0.16	0.773	0.535	1.068	3.40	33.8%	47.1%	63.2%	67.6%	1.071				
K-6 (TK)	0.41	0.774	0.502	1.020	3.61	29.4%	48.5%	64.7%	70.6%	1.091	Surprise:			
Kane-KCN (TK)	0.22	0.774	0.580	1.044	3.56	23.5%	45.6%	64.7%	73.5%	1.060	standard Kane			
SRK/T (TK)	0.14	0.778	0.538	1.055	3.33	26.5%	44.1%	63.2%	69.1%	1.057				
RBF 3.0 (TK)	0.38	0.786	0.485	1.057	3.64	29.4%	51.5%	67.6%	72.1%	1.115	did better			
DGS (TK)	0.47	0.808	0.633	0.999	3.52	25.0%	45.6%	60.3%	67.6%	1.098	than Kane			
DGS (K)	0.50	0.813	0.596	0.995	3.53	22.1%	44.1%	61.8%	70.6%	1.106	KCN!			
Holladay 1 (TK)	0.49	0.843	0.589	1.043	3.46	25.0%	42.6%	57.4%	61.8%	1.144				
Holladay 1 (K)	0.51	0.844	0.577	1.044	3.55	29.4%	47.1%	57.4%	63.2%	1.154	Some			
Haigis (TK)	0.55	0.868	0.602	1.060	3.98	23.5%	44.1%	54.4%	69.1%	1.186	formulas			
Haigis (K)	0.57	0.879	0.608	1.056	3.97	22.1%	42.6%	55.9%	70.6%	1.195				
Hoffer Q (TK)	0.69	0.952	0.722	1.052	3.85	19.1%	33.8%	51.5%	63.2%	1.249	better with			
Hoffer Q (K)	0.71	0.967	0.748	1.051	3.83	19.1%	35.3%	50.0%	60.3%	1.262	K > TK			

TK in K	(C)	١E	yes	5 —	onl	y Ek	<r th="" ε<=""><th>eye</th><th>S</th><th></th><th></th></r>	eye	S					
K	KCN (only EKR eyes) (mean = 24.98 mm; from 21.51 to 29.05 mm) n = 69 rmula ME MAX AE % +/-0.25 D % +/-0.75 D % +/-10 D RMS													
Formula	ME	MAE	MedAE	SD	Max AE	% +/- 0.25 D	% +/- 0.5 D	% +/- 0.75 D	% +/- 1.0 D	RMS				
Barrett KCN - measured (TK	0.25	0.896	0.562	1.229	4.29	17.4%	46.4%	56.5%	68.1%	1.246	In these eyes,			
Barrett KCN -predicted (K)	0.37	0.933	0.600	1.265	4.52	23.2%	44.9%	55.1%	63.8%	1.310				
Kane-KCN (TK)	0.35	0.941	0.668	1.306	4.79	20.3%	40.6%	58.0%	68.1%	1.343	KCN formulas			
EVO (TK)	0.58	0.942	0.620	1.230	4.67	29.0%	44.9%	58.0%	63.8%	1.352	did again well			
Kane-KCN (K)	0.43	0.965	0.712	1.318	4.93	20.3%	40.6%	52.2%	66.7%	1.377				
EVO (K)	0.65	0.966	0.448	1.258	4.82	31.9%	50.7%	55.1%	60.9%	1.406				
Kane (TK)	0.63	0.994	0.682	1.263	4.79	24.6%	40.6%	53.6%	62.3%	1.402				
K-6 (TK)	0.64	0.997	0.650	1.275	5.11	23.2%	39.1%	55.1%	63.8%	1.418	H1 with EKR			
Barrett (TK)	0.70	1.007	0.711	1.252	4.83	21.7%	40.6%	56.5%	63.8%	1.429	did very			
K-6 (K)	0.72	1.010	0.538	1.300	5.27	26.1%	44.9%	56.5%	60.9%	1.476	poorly (MAE			
Kane (K)	0.70	1.016	0.525	1.291	4.93	26.1%	49.3%	52.2%	59.4%	1.458	wise) but had			
DGS (TK)	0.67	1.032	0.737	1.274	4.79	21.7%	36.2%	52.2%	60.9%	1.433				
Barrett (K)	0.78	1.036	0.572	1.279	4.98	29.0%	47.8%	53.6%	58.0%	1.490	lowest ME			
SRK/T (TK)	0.42	1.044	0.688	1.358	4.67	21.7%	36.2%	52.2%	56.5%	1.413	I mar			
DGS (K)	0.76	1.059	0.648	1.278	4.94	18.8%	34.8%	55.1%	62.3%	1.478	Hmm, why is			
SRK/T (K)	0.49	1.067	0.740	1.398	4.78	27.5%	37.7%	50.7%	56.5%	1.473	that??			
Holladay 1 (TK)	0.83	1.124	0.784	1.308	5.14	21.7%	36.2%	47.8%	52.2%	1.540				
Haigis (TK)	0.79	1.131	0.790	1.374	5.31	17.4%	36.2%	44.9%	60.9%	1.576	EKR is a wild			
Holladay 1 (K)	0.90	1.158	0.868	1.344	5.28	23.2%	39.1%	49.3%	53.6%	1.611	card: some			
Haigis (K)	0.87	1.168	0.773	1.381	5.48	15.9%	33.3%	46.4%	62.3%	1.625	eyes did very			
Hoffer Q (TK)	0.97	1.234	0.901	1.343	5.37	13.0%	27.5%	43.5%	53.6%	1.650	well, others			
Hoffer Q (K)	1.05	1.270	0.948	1.356	5.54	13.0%	29.0%	40.6%	52.2%	1.709				
H1 EKR-Pentacam	0.16	1.432	1.151	1.885	4.77	14.5%	31.9%	40.6%	46.4%	1.879	VERY bad (~4 surprises!)			

TK in KC									> 50	D	
KCN											
Formula	MRE	MAE	MedAE	SD	Max AE	% +/- 0.25 D				RMS	KCN
Barrett KCN - measured (TK	0.50	0.865	0.753	1.069	3.66	18.2%	36.4%	50.0%	72.7%	1.160	KUN
Kane-KCN (K)	-0.16	0.894	0.688	1.274	4.18	13.6%	22.7%	59.1%	81.8%	1.255	formulas
Barrett KCN -predicted (K)	0.51	0.928	0.723	1.154	3.75	13.6%	45.5%	50.0%	59.1%	1.238	Tormulas
Kane-KCN (TK)	-0.25	0.969	0.623	1.306	4.09	4.5%	31.8%	59.1%	68.2%	1.299	did very
SRK/T (TK)	0.01	1.047	0.755	1.395	3.26	22.7%	27.3%	50.0%	59.1%	1.363	ulu vel y
SRK/T (K)	0.18	1.064	0.755	1.462	3.31	27.3%	31.8%	50.0%	59.1%	1.440	well
EVO (TK)	0.98	1.081	0.682	1.065	3.97	18.2%	40.9%	54.5%	54.5%	1.432	WCII
K-6 (TK)	0.94	1.096	0.762	1.131	4.18	18.2%	27.3%	50.0%	54.5%	1.449	
Kane (TK)	1.06	1.128	0.789	1.074	4.09	13.6%	31.8%	45.5%	59.1%	1.488	
EVO (K)	1.12	1.156	0.783	1.161	4.07	27.3%	45.5%	45.5%	54.5%	1.594	
Barrett (TK)	1.07	1.162	0.735	1.084	4.22	9.1%	31.8%	50.0%	54.5%	1.507	> Good ole
K-6 (K)	1.08	1.174	0.675	1.209	4.27	22.7%	36.4%	50.0%	54.5%	1.603	
Kane (K)	1.18	1.211	0.803	1.178	4.18	27.3%	45.5%	45.5%	54.5%	1.650	SRK/T
Barrett (K)	1.23	1.260	0.919	1.184	4.32	22.7%	45.5%	45.5%	50.0%	1.687	JNK/ I
DGS (TK)	1.27	1.296	0.967	1.076	4.10	13.6%	22.7%	45.5%	50.0%	1.647	did
Holladay 1 (TK)	1.23	1.301	0.888	1.199	3.97	18.2%	31.8%	45.5%	50.0%	1.701	uiu
DGS (K)	1.41	1.414	1.008	1.188	4.20	18.2%	27.3%	45.5%	50.0%	1.829	well too!
Holladay 1 (K)	1.40	1.428	0.927	1.321	4.05	13.6%	40.9%	45.5%	50.0%	1.902	wentoo:
Haigis (TK)	1.49	1.501	1.075	1.184	4.79	13.6%	18.2%	27.3%	40.9%	1.886	
Haigis (K)	1.66	1.657	1.368	1.302	4.90	9.1%	22.7%	40.9%	40.9%	2.089	
Hoffer Q (TK)	1.66	1.662	1.342	1.149	4.53	9.1%	13.6%	22.7%	31.8%	2.006	
Hoffer Q (K)	1.82	1.820	1.421	1.256	4.63	0.0%	13.6%	22.7%	40.9%	2.195	

TK in KCN Eyes — both K < 50D TK KCN (K-S0) (mean = 24.85 mm; from 21.37 to 29.05 mm) n = 65														
Formula	ME	MAE	MedAE	24.85 mm SD	Max AE	% +/- 0.25 D			% +/- 1.0 D	RMS				
EVO (TK)	0.37	0.802	0.458	1 161	4.67	35.4%	50.8%	63.1%	70.8%	1.209	KCN formulas			
EVO (K)	0.41	0.816	0.415	1.174	4.82	35.4%	56.9%	63.1%	67.7%	1.235	don't do as			
Barrett KCN - measured (TK	0.06	0.839	0.500	1.177	4.29	18.5%	50.8%	61.5%	72.3%	1.170				
Kane (TK)	0.39	0.839	0.520	1.194	4.79	32.3%	49.2%	61.5%	69.2%	1.247	well			
Barrett (TK)	0.48	0.846	0.514	1.183	4.83	30.8%	49.2%	63.1%	69.2%	1.268				
DGS (TK)	0.42	0.852	0.581	1.172	4.79	26.2%	46.2%	60.0%	67.7%	1.238				
K-6 (TK)	0.45	0.863	0.529	1.205	5.11	26.2%	47.7%	61.5%	69.2%	1.278	Multivariable			
Kane (K)	0.45	0.863	0.417	1.207	4.93	30.8%	55.4%	58.5%	66.2%	1.280	formulas			
DGS (K)	0.49	0.864	0.579	1.158	4.94	21.5%	43.1%	61.5%	70.8%	1.247	(EVO, Kane,			
Barrett (K)	0.53	0.865	0.490	1.198	4.98	35.4%	53.8%	60.0%	66.2%	1.303	Barrett, etc)			
K-6 (K)	0.51	0.866	0.432	1.219	5.27	27.7%	52.3%	61.5%	66.2%	1.311				
Kane-KCN (TK)	0.36	0.871	0.647	1.214	4.79	26.2%	46.2%	58.5%	69.2%	1.258	with both TK			
Barrett KCN -predicted (K)	0.19	0.872	0.578	1.233	4.52	26.2%	46.2%	58.5%	66.2%	1.238	and K values			
Kane-KCN (K)	0.43	0.894	0.525	1.230	4.93	26.2%	49.2%	55.4%	66.2%	1.293	did well			
Haigis (TK)	0.49	0.904	0.592	1.236	5.31	21.5%	46.2%	56.9%	72.3%	1.322				
Haigis (K)	0.55	0.919	0.723	1.223	5.48	21.5%	41.5%	52.3%	72.3%	1.333				
SRK/T (TK)	0.36	0.944	0.590	1.263	4.67	21.5%	41.5%	56.9%	60.0%	1.304	SRK/T does			
Holladay 1 (TK)	0.57	0.946	0.567	1.237	5.14	26.2%	43.1%	55.4%	60.0%	1.352	NOT do well			
SRK/T (K)	0.41	0.964	0.611	1.299	4.78	29.2%	43.1%	53.8%	58.5%	1.351	NOT do well			
Holladay 1 (K)	0.62	0.967	0.606	1.259	5.28	29.2%	44.6%	56.9%	61.5%	1.394				
Hoffer Q (TK)	0.64	0.970	0.668	1.224	5.37	18.5%	36.9%	55.4%	66.2%	1.371				
Hoffer Q (K)	0.69	0.989	0.704	1.224	5.54	21.5%	40.0%	52.3%	61.5%	1.398				

TK in KCN Eyes: Summary

- If both Ks are < 50D, KCN eyes function similar to "normal" eyes and do NOT benefit from KCN-specific formulas
- In these eyes, multivariable formulas with TK did slightly better than K
 If one K is > 50D, KCN-specific formulas work best
 - ► Multivariable formulas with TK did better than K
 - Surprisingly, SRK/T works well (tends to run myopic in extreme K eyes)
- Do not use third-generation formulas like H1, HQ, and Haigis for any of these eyes!

Refractive Outcomes in Extreme K (non-ectatic, non LVC) Eyes

TK in Extreme K Eyes: Background

- ► IOL calculations are known to be inaccurate in eyes with extreme K measurements (K≥48D or ≤42D) without ectasia or previous laser vision correction (LVC)
- ▶ The assumed anterior-posterior corneal radius ratios may not be valid in
- Question: Do TK values provide an improvement in accuracy of IOL calculations over standard K values in these eyes?
 Retrospective chart review of 1889 eyes with extreme K measurements by SS-OCT between 2019-2021
 - 169 eyes met inclusion criteria
 Ten IOL formulas studied using K followed by TK
- Barrett Universal 2.0, Evo 2.0, K6, Kane, Hill RBF 3.0, Pearl DGS, Holladay 1, Hoffer Q, SRK/T, Haigis

TK in Extreme K Eyes: Results with K

	(Note:			ds RBF	3.0 eye	es and o	alues (N = one more ti	169) hat would n	iot					
RMSE Rank	Formula	compute at all) Formula ME MAE MedAE SD Max AE % +/- 0.5 D % +/- 0.75 D RMSE												
1	Kane													
2	RBF 3.0	-0.03	0.388	0.345	0.508	2.73	75.6%	92.9%	0.507	n = 168				
3	K6	-0.06	0.379	0.337	0.507	2.90	79.9%	90.5%	0.509	n = 169				
4	Evo 2.0	0.11	0.385	0.295	0.513	2.83	74.6%	91.7%	0.524	n = 169				
5	Barrett U2	-0.03	0.390	0.308	0.530	2.82	75.1%	91.1%	0.529	n = 169				
6	Pearl DGS	0.02	0.407	0.327	0.556	3.07	73.4%	86.4%	0.555	n = 169				
7	Holladay 1	0.07	0.430	0.353	0.554	2.21	69.2%	87.0%	0.557	n = 169				
8	Haigis	0.10	0.436	0.374	0.559	3.05	68.0%	86.4%	0.567	n = 169				
9	SRK/T	-0.12	0.444	0.332	0.576	2.35	66.3%	83.4%	0.587	n = 169				
10	Hoffer Q	0.11	0.469	0.395	0.606	3.15	60.4%	82.8%	0.615	n = 169				

TK	in E	xtrer	ne	ΚE	yes	: Re	sult	ts wi	th Tk		
K Rank	TK Rank	(Note: 3						values (N re that wo		mpute at all)	
RMS Rank	RMS Rank	Formula	ME	MAE	MedAE	SD	Max AE	% +/- 0.5 D	% +/- 1.0 D	RMS	
1	1	Kane	0.00	0.377	0.330	0.501	2.85	72.2%	97.0%	0.499	n = 169
2	3	RBF 3.0	0.04	0.388	0.322	0.508	2.93	72.6%	97.0%	0.508	n = 168
3	2	K6	0.02	0.372	0.299	0.510	3.14	76.9%	95.3%	0.508	n = 169
4	5	Evo 2.0	0.18	0.402	0.335	0.516	3.04	71.0%	95.3%	0.547	n = 169
5	4	Barrett U2	0.05	0.393	0.312	0.536	3.05	73.4%	95.9%	0.537	n = 169
6	6	Pearl DGS	0.10	0.416	0.355	0.551	3.27	71.0%	95.3%	0.559	n = 169
7	7	Holladay 1	0.15	0.441	0.354	0.548	2.39	64.5%	94.7%	0.566	n = 169
8	9	Haigis	0.19	0.455	0.389	0.564	3.30	66.9%	92.9%	0.593	n = 169
9	8	SRK/T	-0.06	0.438	0.343	0.572	2.33	68.6%	93.5%	0.573	n = 169
10	10	Hoffer Q	0.19	0.494	0.420	0.603	3.37	56.8%	92.9%	0.632	n = 169

Difference in ME and RMSE (TK minus K)

Formula	ME	RMSE
SRK/T	0.06	-0.01
Holladay 1	0.07	0.01
Evo 2.0	0.07	0.02
Hoffer Q	0.08	0.02
Barrett U2	0.08	0.01
K6	0.08	0
Kane	0.08	-0.01
Pearl DGS	0.08	0
RBF 3.0	0.08	0
Haigis	0.09	0.03

Minimal change when using K or TK

Surprisingly, ME shifts slightly hyperopic when using TK values

Results	s: K	VS	ΤK	in E	Extr	em	еK	Ey	es			
Eve 20 (K) 0.11 0.385 0.295 0.513 2.83 74.9% 94.7% 0.524 n=160 than third- than third- Barett U2 (TK) 0.080 0.080 0.530 2.82 73.1% 95.9% 0.537 n=169 than third- than third- barett U2 (TK) 0.66 0.383 0.312 0.586 3.05 73.4% 95.9% 0.537 n=169 K vs TK min Diss (% 0.047 0.327 0.566 3.07 73.4% 95.3% 0.547 n=169 K vs TK min												
Table 1B. Extreme Eyes using K values (N = 169) (Note; 2 out-of-bounds REF 3.0 eyes and one more that would not compute at all) Fermida ME Me& Me& Me& S Note 8.5 Note 8.7 Note 9.5 Note 9.5 Note 8.7 Note 9.5 Note 8.7 Note 9.5 Note 8.7 Note 9.5 Note 9.												
									n - 460			
										Multivariable		
										formulas		
										performed better		
										than third-gen		
										K TK mainting will a		
										affected a given		
										formula		
										Iomola		
Haigis (K)	0.15	0.441	0.354	0.548	2.39	68.0%	94.7%		n = 169			
SRK/T (TK)	-0.06	0.430	0.374	0.559	2.33	68.6%	95.3%		n = 169			
SRK/T (K)	-0.12	0.444	0.343	0.572	2.35	66.3%	93.5%		n = 169			
Haigis (TK)	0.12	0.444	0.332	0.576	3.30	66.9%	92.9%		n = 169			
Halgis (TK) Hoffer Q (K)	0.19	0.455	0.389	0.564	3.30	60.9%	92.9%		n = 169			
Hoffer Q (TK)	0.11	0.409	0.395	0.603	3.15	56.8%	92.9%		n = 169			

TK in Extreme K Eyes: Summary

- ► TK values did not significantly improve the performance of a given formula when using TK or K values
- Multivariable formulas with either K or TK perform slightly better than third-generation formulas in these eyes

Refractive Outcomes in Combined Phaco-DMEK Eyes

TK in Phaco-DMEK Eyes

- IOL calculations are challenging in eyes undergoing combined cataract surgery and DMEK with a near-universal tendency for more-than-intended hyperopic refractive outcomes
- This is primarily due to inaccuracy of corneal measurements secondary to corneal pathology causing
 1) alterations of the posterior corneal curvature and
 2) increased corneal thickness from corneal edema
- Previously, we have relied on adjustment factors, such as targeting additional myopia (approx. -0.75 to -1.00D) to compensate for postoperative hyperopic shift and achieve a plano refractive target
- We sought to study whether using K or TK values with a given formula would lead to more accurate refractive results

TK in Phaco-DMEK Eyes

- Retrospective review of 83 eyes in 62 patients that underwent concurrent cataract surgery and DMEK between 2019-2021
 9 formulas studied include Barrett Universal 2.0, Evo 2.0, K-6, Kane, Pearl DG Holladay 1, Hoffer Q, SRK/T, and Haigis (using both K and TK values)
 - Only IOLcon lens constants were used
 Values were inputted into the respective formula websites
- Formulas were additionally tested by internally increasing 1.00 D ("adjusted formula").
- Refractions were done 30-120 days postoperatively with adjustments for lane length
- Postoperative refractive outcomes were compared with predicted refractive outcomes to determine the mean error (ME), mean absolute error (MAE), standard deviation, and percentage of eyes within ±0.25, ±0.5, ±0.75, and ±1.00D of the targeted outcome

	MAE	SD	MedAE	MaxAE	RMS-PE	± 0.50 D (%)	± 1.00 D (%)	
Kane (K)	0.88	0.89	0.75	2.64	1.07	34.9%	63.9%	All 9 formula
Cooke K6 (K)	0.89	0.88	0.73	2.62	1.09	30.1%	61.4%	are better
EVO 2.0 (K)	0.90	0.88	0.83	2.61	1.10	31.3%	62.7%	with K than
SRK/T (K)	0.91	0.89	0.74	2.89	1.14	36.1%	61.4%	
Pearl DGS (K)	0.92	0.90	0.84	2.57	1.11	30.1%	54.2%	for TK
iolladay I (K)	0.99	0.89	0.89	2.97	1.20	32.5%	54.2%	
arrett Universal II (K)	1.01	0.89	0.87	2.73	1.21	27.7%	55.4%	
(ane (TK)	1.04	0.97	0.80	2.99	1.26	34.9%	53.0%	
RK/T (TK)	1.04	0.94	0.87	3.67	1.28	25.3%	56.6%	Lower MAE
Cooke K6 (TK)	1.05	0.96	0.97	2.89	1.28	30.1%	53.0%	values with
.VO 2.0 (TK)	1.05	0.96	0.98	3.02	1.27	27.7%	50.6%	multivariable
lofferQ (K)	1.00	0.91	1.08	3.05		31.3%	47.0%	formulas an
laigis (K)	1.06	0.96	1.01	3.00	1.27	27.7%	49.4%	
earl DGS (TK)	1.09	1.02	1.02	2.91	1.32	27.7%	49.4%	SRK/T using I
Iolladay I (TK)	1.15	0.98	1.08	3.59	1.39	25.3%	48.2%	
arrett Universal II (TK)	1.18	0.96		3.39	1.41	21.7%	47.0%	Barrett wors
lofferQ (TK)	1.25	1.10	1.23	3.60		24.1%	43.4%	MV formula
Haigis (TK)	1.26	1 07	1.23	3 54	1.52	25.3%	44.6%	INV TORMUIA

TK in Phaco-DMEK Eyes: adjust IOL 1D										
	MAE	SD	MedAE	MaxAE	RMS-PE	± 0.50 D (%)	± 1.00 D (%)			
SRK/T (K)	0.67	0.88	0.53	2.20	0.88	48.2%	75.9%			
Cooke K6 (K)	0.69	0.88	0.56	2.29	0.88	45.8%	77.7%			
EVO 2.0 (K)	0.70	0.90	0.52	2.34	0.89	48.2%	71.1%			
Barrett Universal II (K)	0.70	0.88	0.53	2.28	0.89	47.0%	74.7%			
Kane (K)	0.71	0.91	0.57	2.34	0.90	44.6%	74.7%			
Holladay I (K)	0.71	0.89	0.57	2.31	0.90	43.4%	71.1%			
Pearl DGS (K)	0.76	0.95	0.64	2.53	0.95	42.2%	71.1%			
Hoffer Q (K)	0.77	0.91	0.67	2.39	0.94	36.1%	68.7%			
Haigis (K)	0.78	0.95	0.66	2.46	0.96	33.7%	69.9%			
inal refraction, w	s an example, if Cooke K6 predicted an +11.00 D IOL would give a -0.50 D nal refraction, we would advise that surgeons use a +12.00 D IOL (increase to IOL power by 1.00 D) to obtain the desired refraction of -0.50 D									

Why Did TK Perform Poorly?

Normal cornea

- Edematous cornea posterior flattening

 Ant K gives less negative than expected
 Measured PK value falsely skews the TK
- Ant K gives less negative than expected
 Measured PK value falsely skews the TK
 After DMEK, posterior comeal steepening occurs → hence TK value is worse than K value
- "Better to remain ignorant" of the posterior cornea in phaco-DMEK eyes

TK in Phaco-DMEK Eyes: Summary

- Accuracy remains challenging in these eyes
- ► For all formulas, the prediction accuracy of K is higher than that of TK
- Multivariable formulas (excluding Barrett) are the most accurate
- using an IOL power +1.0D higher with all formulas further improve the chances of postoperative refractive accuracy

Refractive Outcomes in Post Penetrating Keratoplasty Eyes

TK in Post-PKP Eyes: Background

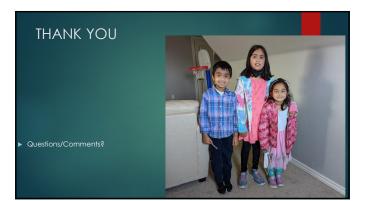
- IOL calculations remain challenging in patients who have undergone prior corneal transplant surgery (penetrating keratoplasty [PKP]), primarily due to inaccuracy in corneal measurements, significant/irregular astigmatism, or corneal pathology
- While not as common, surgeons may encounter situations where they have to perform cataract surgery after previous PKP
- There is a scarcity of literature or guidelines regarding formula choice these patients. Most surgeons utilize routine formulas with additional myopia targeted.
- Question: Since K measurements in these eyes are often inaccurate, does using TK improve refractive accuracy?
- ▶ 22 eyes with previous PKP \rightarrow 13 met inclusion criteria

Results – K values											
K PKP eyes (IOLcon) (mean = 25.08 mm; from 23.55 to 27.8 mm) n = 13											
Formula ME MAE MedAE SD Max AE % +/- 0.5 D % +/- 1.0 D RMSE											
K-6	0.41	0.668	0.614	0.708	1.59	46.2%	84.6%	0.792	n = 13		
T2	0.40	0.752	0.749	0.794	1.38	30.8%	69.2%	0.860	n = 13		
DGS	0.48	0.725	0.737	0.763	1.65	38.5%	69.2%	0.879	n = 13		
Holladay 1	0.48	0.815	0.749	0.815	1.65	23.1%	69.2%	0.920	n = 13		
Barrett	0.54	0.799	0.933	0.784	1.63	30.8%	69.2%	0.924	n = 13		
Haigis	0.76	0.856	0.970	0.695	1.81	38.5%	53.8%	1.013	n = 13		
Hoffer Q	0.76	0.882	1.000	0.786	1.84	38.5%	53.8%	1.068	n = 13		
SRK/T	-0.05	1.020	0.660	1.422	3.64	46.2%	61.5%	1.367	n = 13		
EVO 2.0	0.45	0.657	0.603	0.623	1.32	33.3%	83.3%	0.747	n = 12		
Kane	0.33	0.737	0.675	0.809	1.41	27.3%	72.7%	0.839	n = 11		
Hill RBF 3.0	0.55	0.757	0.820	0.714	1.48	27.3%	81.8%	0.874	n = 11		

Results - TK										
TK PKP eyes (IOLcon) (mean = 25.08 mm; from 23.55 to 27.8 mm) n = 13										
Formula	ME	MAE	MedAE	SD	Max AE	% +/- 0.5 D	% +/- 1.0 D	RMSE		
K-6	0.41	0.635	0.638	0.635	1.23	46.2%	84.6%	0.733	n = 13	
DGS	0.48	0.708	0.592	0.705	1.53	30.8%	69.2%	0.829	n = 13	
T2	0.40	0.715	0.781	0.767	1.47	38.5%	69.2%	0.838	n = 13	
Barrett	0.53	0.767	0.625	0.773	1.50	38.5%	61.5%	0.912	n = 13	
Holladay 1	0.50	0.768	0.767	0.835	2.11	46.2%	76.9%	0.944	n = 13	
Haigis	0.76	0.832	0.693	0.731	1.85	38.5%	69.2%	1.034	n = 13	
Hoffer Q	0.75	0.857	0.735	0.796	2.04	30.8%	69.2%	1.073	n = 13	
SRK/T	-0.03	0.987	0.761	1.292	3.15	23.1%	69.2%	1.241	n = 13	
Kane	0.25	0.615	0.640	0.699	1.28	45.5%	90.9%	0.710	n = 11	
EVO 2.0	0.42	0.663	0.770	0.656	1.36	41.7%	91.7%	0.753	n = 12	
Hill RBF 3.0	0.47	0.710	0.720	0.687	1.41	41.7%	75.0%	0.808	n = 12	
$\sim 10\%$ of ever w	oro with	nin () 50	Noting		OF TK	alues he	alped dia	atly		

~40% of eyes were within 0.5D. Not normal eyes. TK values helped slightly Many newer MV formulas couldn't run all eyes

Ranked	Ranked by RMSE									
Formula	ME	MAE	MedAE	SD	Max AE	% +/- 0.5 D	% +/- 1.0 D	RMSE		
K-6 (TK)	0.41	0.635	0.638	0.635	1.23	46.2%	84.6%	0.733		
K-6 (K)	0.41	0.668	0.614	0.708	1.59	46.2%	84.6%	0.792		
DGS (TK)	0.48	0.708	0.592	0.705	1.53	30.8%	69.2%	0.829		
T2 (TK)	0.40	0.715	0.781	0.767	1.47	38.5%	69.2%	0.838		
T2 (K)	0.40	0.752	0.749	0.794	1.38	30.8%	69.2%	0.860		
DGS (K)	0.48	0.725	0.737	0.763	1.65	38.5%	69.2%	0.879		
Barrett (TK)	0.53	0.767	0.625	0.773	1.50	38.5%	61.5%	0.912	/	
Holladay 1 (K)	0.48	0.815	0.749	0.815	1.65	23.1%	69.2%	0.920	í.	
Barrett (K)	0.54	0.799	0.933	0.784	1.63	30.8%	69.2%	0.924		
Holladay 1 (TK)	0.50	0.768	0.767	0.835	2.11	46.2%	76.9%	0.944		
Haigis (K)	0.76	0.856	0.970	0.695	1.81	38.5%	53.8%	1.013		
Haigis (TK)	0.76	0.832	0.693	0.731	1.85	38.5%	69.2%	1.034		
Hoffer Q (K)	0.76	0.882	1.000	0.786	1.84	38.5%	53.8%	1.068		
Hoffer Q (TK)	0.75	0.857	0.735	0.796	2.04	30.8%	69.2%	1.073		
SRK/T (TK)	-0.03	0.987	0.761	1.292	3.15	23.1%	69.2%	1.241		
SRK/T (K)	-0.05	1.020	0.660	1.422	3.64	46.2%	61.5%	1.367		



TK in Post-PKP Eyes: Summary

- Very small number of eyes that met inclusion criterion
- TK results were not statistically better than K results
- While we recommend K6 (with K or with TK) as having the best performance across all studied eyes, we also note the strong performance of Kane and EVO, with the caveat that these formulas may not compute all eyes, so surgeons should be prepared to utilize other formulas

Our Recommendations for TK

- ► TK values can help detect previous M-LVC eyes (CRW1 Index)
- Post M-LVC Eyes
- Use dedicated post M-LVC formulas with traditional K value
 TK helps improve the EVO-LVC and Barrett True K formulas
- KCN Eyes
- Both Ks are < 50D: multivariable formulas with TK did better than K; KCN-specific formulas did not help
 If one K is > 50D, KCN-specific formulas (either with K or TK) work best; SRK/T works well
- Extreme K Eyes
- TK didn't help much; multivariable formulas > older formulas
- Phaco-DMEK Eyes
- Post-PKP Eyes

